TREE ON TOP OF MALTSEV

MIKLÓS MARÓTI

Abstract

Let \mathbf{B} be an idempotent algebra, $\beta \in \operatorname{Con} \mathbf{B}$ such that \mathbf{B} / β is term equivalent to a semilattice whose order is a rooted tree, and each β-block is Maltsev. Then $\operatorname{CSP}(\mathbf{B})$ is tractable.

Let $\mathbf{B}=(B ; F)$ be an algebra and t be a unary idempotent polynomial of \mathbf{B}. The retract of \mathbf{B} via t is the algebra $t(\mathbf{B})=(t(B) ;\{t \circ f: f \in F\})$. A template \mathcal{B} for the constraint satisfaction problem is a set of finite idempotent algebras of similar type closed under taking subalgebras, homomorphic images and retracts via idempotent unary polynomials, but containing only one algebra of each isomorphism type. An instance

$$
\mathcal{A}=\left\{\mathbf{B}_{i} \in \mathcal{B}, \mathbf{R}_{I} \leq \prod_{i \in I} \mathbf{B}_{i} \mid i \in V, I \in S\right\}
$$

of the constraint satisfaction problem $\operatorname{CSP}(\mathcal{B})$ consists of a set V of variables, a domain set $\mathbf{B}_{i} \in \mathcal{B}$ for each variable $i \in V$, a set $S \subseteq P(V)$ of constraint scopes, and a constraint relation $\mathbf{R}_{I} \leq \prod_{i \in I} \mathbf{B}_{i}$ for each scope $I \in S$. A solution of \mathcal{A} is a function $f \in \prod_{i \in V} B_{i}$ such that $\left.f\right|_{I} \in R_{I}$ for each scope $I \in S$.

1. Consistent maps

Definition 1. Let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$. A set $p=\left\{p_{i} \mid i \in V\right\}$ of maps is consistent with \mathcal{A} if for all $i \in V$ the map p_{i} is a unary polynomial of \mathbf{B}_{i}, and for every scope $I \in S$ and tuple $r \in R_{I}$ the tuple $\left.p\right|_{I}(r)=\left\langle p_{i}\left(r_{i}\right): i \in I\right\rangle$ is also in R_{I}. We say that p is permutational, if each p_{i} is a permutation, and it is idemptent, if $p_{i}\left(p_{i}(x)\right)=p_{i}(x)$ for all $i \in V$.

Clearly, every consistent set $p=\left\{p_{i}: i \in V\right\}$ of maps can be iterated to obtain an idempotent one $p^{\prime}=\left\{p_{i}^{k}: i \in V\right\}$ where $k=\left(\max _{i \in I}\left|B_{i}\right|\right)$! for example.

Definition 2. Let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$ and $p=\left\{p_{i} \mid i \in V\right\}$ be a consistent set of idempotent unary polynomials. The retraction of \mathcal{A} via p is the new instance $p(\mathcal{A})$ of $\operatorname{CSP}(\mathcal{B})$ defined as

$$
p(\mathcal{A})=\left\{p_{i}\left(\mathbf{B}_{i}\right),\left.p\right|_{I}\left(\mathbf{R}_{I}\right) \mid i \in V, I \in S\right\}
$$

It easily follows from the definitions that the relation

$$
\left.p\right|_{I}\left(\mathbf{R}_{I}\right)=\left\{\left.p\right|_{I}(r) \mid r \in R_{I}\right\}=R_{I} \cap \prod_{i \in I} p_{i}\left(B_{i}\right)
$$

is a subuniverse of $\prod_{i \in I} p_{i}\left(\mathbf{B}_{i}\right)$.

[^0]Lemma 3. Let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$ and p be a consistent set of idempotent unary polynomials. Then \mathcal{A} has a solution if and only if $p(\mathcal{A})$ does.
Proof. Since $p_{i}\left(B_{i}\right) \subseteq B_{i}$ and $\left.p\right|_{I}\left(R_{I}\right) \subseteq R_{I}$, any solution of $p(\mathcal{A})$ is a solution of \mathcal{A}. Conversely, if f is a solution of \mathcal{A}, then the function $p \circ f=\left\langle p_{i}\left(f_{i}\right): i \in V\right\rangle$ is a solution of $p(\mathcal{A})$.

Definition 4. Let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$ and t be a binary term such that $t(x, t(x, y))=t(x, y)$. For an element $b \in B_{i}$ we put $t_{b}(x)=t(b, x)$, which is an idempontent polynomial of \mathbf{B}_{i}. The decomposition of \mathcal{A} via t is the new instance $t(\mathcal{A})$ of $\operatorname{CSP}(\mathcal{B})$ defined as

$$
t(\mathcal{A})=\left\{\mathbf{B}_{i, b}, \mathbf{R}_{I, r}, \mathbf{T}_{i, B_{i}} \mid(i, b) \in V^{\prime},(I, r) \in S^{\prime},\left(i, B_{i}\right) \in U^{\prime}\right\}
$$

where

$$
V^{\prime}=\left\{(i, b) \mid i \in V, b \in B_{i}\right\}
$$

is the set of variables,

$$
\mathbf{B}_{i, b}=t_{b}\left(\mathbf{B}_{i}\right)=\left\{t(b, x) \mid x \in B_{i}\right\}
$$

are the domains,

$$
\begin{gathered}
S^{\prime}=\left\{(I, r) \mid I \in S, r \in R_{I}\right\} \\
U^{\prime}=\left\{\left(i, B_{i}\right) \mid i \in V\right\}
\end{gathered}
$$

are sets of scopes where

$$
(I, r)=\left\{\left(i, r_{i}\right) \mid i \in I\right\} \quad \text { and } \quad\left(i, B_{i}\right)=\left\{(i, b) \mid b \in B_{i}\right\}
$$

and

$$
\begin{gathered}
\mathbf{R}_{I, r}=t_{r}\left(\mathbf{R}_{I}\right)=\left\{\left\langle t\left(r_{i}, s_{i}\right): i \in I\right\rangle \mid s \in R_{I}\right\}, \\
\mathbf{T}_{i, B_{i}}=\operatorname{Sg}_{\mathbf{B}_{i}^{\star}}\left\{\left\langle t(b, c): b \in B_{i}\right\rangle \mid c \in B_{i}\right\}
\end{gathered}
$$

are the relations where $\mathbf{B}_{i}^{\star}=\prod_{b \in B_{i}} \mathbf{B}_{i, b}$.
Lemma 5. Let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$ and t be a binary term such that $t(x, t(x, y))=t(x, y)$. If \mathcal{A} has a solution, then so does $t(\mathcal{A})$.
Proof. Let f be a solution of the instance \mathcal{A}. We define a solution g of $t(\mathcal{A})$ as

$$
g((i, b))=t\left(b, f_{i}\right)
$$

for all $(i, b) \in V^{\prime}$. Clearly, $g((i, b)) \in B_{i, b}$. Take a scope $(I, r) \in S^{\prime}$. By definition,

$$
\left.g\right|_{(I, r)}=\left\langle t\left(r_{i}, f_{i}\right): i \in I\right\rangle=t\left(r,\left.f\right|_{I}\right)
$$

However, f is a solution, so both r and $\left.f\right|_{I}$ are in \mathbf{R}_{I} and therefore $t\left(r,\left.f\right|_{I}\right) \in \mathbf{R}_{I}$ as well. Clearly, $t\left(r,\left.f\right|_{I}\right) \in \prod_{i \in I} \mathbf{B}_{i, r_{i}}$, thus we have shown that $\left.g\right|_{(I, r)} \in \mathbf{R}_{i, r}$.

Now take a scope $\left(i, B_{i}\right) \in U^{\prime}$ of the second kind. Here

$$
\left.g\right|_{\left(i, B_{i}\right)}=\left\langle t\left(b, f_{i}\right): b \in B_{i}\right\rangle
$$

that is, it is one of the generating elements of $\mathbf{T}_{i, B_{i}}$.
In the next lemma we will try to understand the structure of the $\mathbf{T}_{i, B_{i}}$ relations in $t(\mathcal{A})$, so we focus on a single $\mathbf{B}=\mathbf{B}_{i}$ algebra for a moment.

Lemma 6. Let \mathbf{B} be an algebra, and t be a binary term such that $t(x, t(x, y))=$ $t(x, y)$. For $b \in B$ let $\mathbf{B}_{b}=t_{b}(\mathbf{B})$, and put $\mathbf{B}^{*}=\prod_{b \in B} \mathbf{B}_{b}$. Let

$$
\mathbf{T}=\operatorname{Sg}_{\mathbf{B}^{*}}\{\langle t(b, c): b \in B\rangle \mid c \in B\}
$$

and take a tuple $r \in T$. Then the following hold.
(1) The map $p: b \mapsto r_{b}$ is a unary polynomial of \mathbf{B}.
(2) Let $b_{1}, b_{2} \in B$ and ϑ be a congruence of \mathbf{B}. If $t\left(b_{1}, x\right) \equiv_{\vartheta} t\left(b_{2}, x\right)$ for all $x \in B$, then $p\left(b_{1}\right) \equiv_{\vartheta} p\left(b_{2}\right)$.
Proof. Each generator tuple $\langle t(b, c): b \in B\rangle$ of \mathbf{T} is actually a map from B to B and it is a unary polynomial \mathbf{B} in the variable b where c is a constant. When we generate the subalgebra by these vectors, then we take a basic operation f of \mathbf{B}, some unary polynomials $p_{1}(b), \ldots, p_{k}(b)$ already generated and generate the tuple $p(b)=t\left(b, f\left(p_{1}(b), \ldots, f_{k}(b)\right)\right)$, which is again a unary polynomial of \mathbf{B} in the variable b.

To prove the second claim it is enough to see that $s\left(b_{1}\right) \equiv_{\vartheta} s\left(b_{2}\right)$ for each generator tuple s and verify that this property is preserved. So assume that the unary polynomials p_{1}, \ldots, p_{k} are already generated and $p_{1}\left(b_{1}\right) \equiv_{\vartheta} p_{1}\left(b_{2}\right), \ldots, p_{k}\left(b_{1}\right) \equiv_{\vartheta} p_{k}\left(b_{1}\right)$. Thus $c_{1}=f\left(p_{1}\left(b_{1}\right), \ldots, f_{k}\left(b_{1}\right)\right) \equiv_{\vartheta} f\left(p_{1}\left(b_{2}\right), \ldots, f_{k}\left(b_{2}\right)\right)=c_{2}$, and using again our assumption that $t\left(b_{1}, x\right) \equiv_{\vartheta} t\left(b_{2}, x\right)$, we get that $p\left(b_{1}\right)=t\left(b_{1}, c_{1}\right) \equiv_{\vartheta} t\left(b_{1}, c_{2}\right) \equiv_{\vartheta}$ $t\left(b_{2}, c_{2}\right)=p\left(b_{2}\right)$ for the newly generated polynomial p.

Lemma 7. Let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$ and t be a binary term such that $t(x, t(x, y))=t(x, y)$. If $t(\mathcal{A})$ has a solution, then there exists a consistent set $\left\{p_{i}: i \in V\right\}$ of unary polynomials for the instance \mathcal{A} such that each polynomial p_{i} of \mathbf{B}_{i} satisfies the conclusion of Lemma 6 .

Proof. Let g be a solution of $t(\mathcal{A})$. We define a consistent set $p=\left\{p_{i} \mid i \in V\right\}$ of unary maps for \mathcal{A} as

$$
p_{i}(b)=g((i, b))
$$

for $i \in V$ and $b \in B_{i}$. By Lemma 6 , each map $p_{i}: B_{i} \rightarrow B_{i}$ is a unary polynomial of \mathbf{B}_{i}. To see that it preserves the relations of \mathcal{A} take a scope $I \in S$ and a tuple $r \in \mathbf{R}_{I}$. Since g was a solution to $t(\mathcal{A})$ it respects the constraint $\mathbf{R}_{I, r}$, that is the tuple $\left\langle g\left(\left(i, r_{i}\right)\right): i \in I\right\rangle$ is in $\mathbf{R}_{I, r} \subseteq \mathbf{R}_{I}$. But this tuple is exactly $\left.p\right|_{I}(r)$, which shows that p is consistent.

Definition 8. We say that an idempotent algebra \mathbf{B} can be eliminated, if whenever \mathcal{B} is a template such that $\mathbf{B} \in \mathcal{B}, \mathcal{B} \backslash \mathbf{B}$ is also a template, and $\operatorname{CSP}(\mathcal{B} \backslash\{\mathbf{B}\})$ is tractable, then $\operatorname{CSP}(\mathcal{B})$ is also tractable.

Lemma 9. Let \mathbf{B} be an algebra and t be a binary term of \mathbf{B} such that for each $b \in B$ the map $t_{b}(x)=t(b, x)$ is idempotent and not surjective. Let C be the set of elements $c \in B$ such that $x \mapsto t(x, c)$ is a permutation. If C generates a proper subuniverse of \mathbf{B}, then \mathbf{B} can be eliminated.

Proof. Let \mathcal{B} be a template containing \mathbf{B} and let \mathcal{A} be an instance of $\operatorname{CSP}(\mathcal{B})$ containing at least one copy of \mathbf{B}. Replace all occurence of \mathbf{B} in \mathcal{A} with the subalgebra generated by the set C. Clearly, this new instance is an instance of $\operatorname{CSP}(\mathcal{B} \backslash\{\mathbf{B}\})$ so it can be solved in polynomial time. If it has a solution, then we are done, so we can assume that it does not.

Since the maps t_{b} are not surjective, $\left|t_{b}(\mathbf{B})\right|<|\mathbf{B}|$ and therefore the decomposition $t(\mathcal{A})$ is an instance of $\operatorname{CSP}(\mathcal{B} \backslash\{\mathbf{B}\})$. Thus it can be solved in polynomial time. If $t(\mathcal{A})$ has no solution, then \mathcal{A} has no solution either by Lemma 5 . On the other hand if $t(\mathcal{A})$ has a solution, then by Lemma 7 we have a consistent set $p=\left\{p_{i}: i \in V\right\}$ of unary polynomials for \mathcal{A}. Let us assume for a moment that p is not permutational. Now p can be iterated to obtain an idempotent nonpermutational consistent set p^{\prime} of unary polynomials for \mathcal{A}. By Lemma 3 we know
that \mathcal{A} has a solution if and only if $p^{\prime}(\mathcal{A})$ does. Also, since p^{\prime} is non-permutational, at least one of the domains of $p^{\prime}(\mathcal{A})$ is smaller than that of \mathcal{A}. So by iterating this procedure we will get to a point when the algebra \mathbf{B} no longer occurs in the instance \mathcal{A}.

Now we go back to the problem of making sure that p becomes non-permutational. We know that if \mathcal{A} has a solution f, then for at least one $i \in V, \mathbf{B}_{i}=\mathbf{B}$ and $f_{i} \notin C$. Let us iterate through all variables $i \in V$ such that $B_{i}=B$ and all elements $d \in B \backslash C$. For each choice of i and d we create a new instance from $t(\mathcal{A})$ by adding new unary constraints stating that the solution $\left.g\right|_{\left(i, B_{i}\right)}=\left\langle t(b, d): b \in B_{i}\right\rangle$. This ensures that $p_{i}(b)=t(b, d)$, that is it is not permutational. If for any of these choices we find a non-permutational case, then we can reduce the instance as shown above. Otherwise we conculde that the instance has no solution.

2. Application

Corollary 10. Let \mathbf{B} be an idempotent algebra, and $\beta \in \mathbf{C o n} \mathbf{B}$ such that \mathbf{B} / β is a semilattice (possibly with more operations) having more than one maximal element. Then B can be eliminated.

Proof. Take a binary term t of \mathbf{B} that is a semilattice operation on \mathbf{B} / β. We can assume, that $t(x, t(x, y))=t(x, y)$ on \mathbf{B}. Since \mathbf{B} / β has more than one maximal element, for all $b \in B$ the maps $x \mapsto t(b, x)$ and $x \mapsto t(x, b)$ are not permutations. Thus we can apply Lemma 9 with $C=\emptyset$.

Corollary 11. Let \mathbf{B} be an idempotent algebra, $\beta \in \mathbf{C o n} \mathbf{B} \backslash\left\{1_{\mathbf{B}}\right\}$ and t be a binary term such that t is a semilattice operation on \mathbf{B} / β. If the largest β-block (with respect to the semilattice order) contains more than one element and satisfies $t(x, y)=x$, then \mathbf{B} can be eliminated.
Proof. We can assume that $t(x, t(x, y))=t(x, y)$ on \mathbf{B}, since we can iterate t in the second variable without destroying the required properties stated in the lemma. By Corollary $10, \mathbf{B} / \beta$ has a largest element Q. Suppose, that the β-block Q has more than one element. Then the maps $t_{b}(x)=t(b, x)$ are not permutations. Moreover, for any $c \in B$ for which $x \mapsto t(x, c)$ is a permutation we must have $c \in Q$. However, Q is a proper subuniverse of \mathbf{B}, thus we can apply Lemma 9 to finish the proof.

Bolyai Institute, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, HunGARY

E-mail address: mmaroti@math.u-szeged.hu

[^0]: Date: October 20, 2010.
 This research was partially supported by the Hungarian National Foundation for Scientific Research (OTKA), grant nos. PD 75475 and K 77409.

